Exam Seat No:\_\_\_\_

# C.U.SHAH UNIVERSITY Winter Examination-2015

|     | Subject<br>Subject<br>Branch:<br>Semeste<br>Time :22<br>Instruction<br>(1)<br>(2)<br>(3)<br>(4) | Name: Fluid Mechanics.<br>Code: 4TE04FME1<br>Automobile Engineering/Mechanical l<br>r: 4<br>:30 to 5:30<br>ons:<br>Use of Programmable calculator & any of<br>Instructions written on main answer book<br>Draw neat diagrams and figures (if necess<br>Assume suitable data if needed. | Engineering<br>Date: 19/11/2015<br>Marks: 70<br>ther electronic instrument is prohibited.<br>are strictly to be obeyed.<br>sary) at right places. |      |  |
|-----|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| 0.1 |                                                                                                 | Attornat the following questions.                                                                                                                                                                                                                                                      |                                                                                                                                                   | (14) |  |
| Q-1 | a)                                                                                              | a) The mass per unit volume of a liquid at a standard temperature and pressure is                                                                                                                                                                                                      |                                                                                                                                                   |      |  |
|     | /                                                                                               | called as                                                                                                                                                                                                                                                                              | 1 1                                                                                                                                               |      |  |
|     |                                                                                                 | a) specific weight                                                                                                                                                                                                                                                                     | b) Mass density                                                                                                                                   |      |  |
|     |                                                                                                 | c)specific gravity                                                                                                                                                                                                                                                                     | d) None of these                                                                                                                                  |      |  |
|     | <b>b</b> )                                                                                      | The unit of surface tension                                                                                                                                                                                                                                                            |                                                                                                                                                   |      |  |
|     |                                                                                                 | a) N/m                                                                                                                                                                                                                                                                                 | b) N/m <sup>2</sup>                                                                                                                               |      |  |
|     |                                                                                                 | c) $N/m^3$                                                                                                                                                                                                                                                                             | d) N-m                                                                                                                                            |      |  |
|     | <b>c</b> )                                                                                      | A manometer is used to measure                                                                                                                                                                                                                                                         |                                                                                                                                                   |      |  |
|     |                                                                                                 | a) Low pressure                                                                                                                                                                                                                                                                        | b) Moderate pressure                                                                                                                              |      |  |
|     |                                                                                                 | c) High pressure                                                                                                                                                                                                                                                                       | d) Atmospheric pressure                                                                                                                           |      |  |
|     | <b>d</b> )                                                                                      | According to equation continuity                                                                                                                                                                                                                                                       |                                                                                                                                                   |      |  |
|     |                                                                                                 | a) w1a1= w2a2                                                                                                                                                                                                                                                                          | b) $w1v1 = w2v2$                                                                                                                                  |      |  |
|     |                                                                                                 | c) $a1v1 = a2v2$                                                                                                                                                                                                                                                                       | d) $a1/v1 = a2/v2$                                                                                                                                |      |  |
|     | <b>e</b> )                                                                                      | Bernoulli's equation is applied to                                                                                                                                                                                                                                                     |                                                                                                                                                   |      |  |
|     |                                                                                                 | a) Venturimeter                                                                                                                                                                                                                                                                        | b) Orifice meter                                                                                                                                  |      |  |
|     |                                                                                                 | c) Pitot tube                                                                                                                                                                                                                                                                          | d) All of these                                                                                                                                   |      |  |
|     | f) An opening in the side of the tank or vessel such that the liquid surface w                  |                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |      |  |
|     |                                                                                                 | tank below the top edge of the opening                                                                                                                                                                                                                                                 | is called                                                                                                                                         |      |  |
|     |                                                                                                 | a) Weir                                                                                                                                                                                                                                                                                | b) Notch                                                                                                                                          |      |  |
|     |                                                                                                 | b) Orifice                                                                                                                                                                                                                                                                             | d) None of these                                                                                                                                  |      |  |
|     | <b>g</b> )                                                                                      | Newton's law of viscosity is a relations                                                                                                                                                                                                                                               | hip between                                                                                                                                       |      |  |
|     |                                                                                                 | a) pressure, velocity and temperature                                                                                                                                                                                                                                                  | b) shear stress and rate of shear strain                                                                                                          |      |  |
|     |                                                                                                 | c)shear stress and velocity                                                                                                                                                                                                                                                            | d) rate of shear strain and temperature                                                                                                           |      |  |
|     | <b>h</b> )                                                                                      | The unit of kinematic viscosity is                                                                                                                                                                                                                                                     |                                                                                                                                                   |      |  |
|     |                                                                                                 | a) N-m/s                                                                                                                                                                                                                                                                               | b)N-s/m2                                                                                                                                          |      |  |
|     |                                                                                                 | c) $m^2/s$                                                                                                                                                                                                                                                                             | d) N-m                                                                                                                                            |      |  |
|     | i)                                                                                              | Water is a fluid                                                                                                                                                                                                                                                                       |                                                                                                                                                   |      |  |
|     |                                                                                                 | a) Real                                                                                                                                                                                                                                                                                | b) Ideal                                                                                                                                          |      |  |
|     |                                                                                                 | c)Newtonian                                                                                                                                                                                                                                                                            | d) Non- Newtonian                                                                                                                                 |      |  |
|     | <b>j</b> )                                                                                      | The velocity at which the flow is chan                                                                                                                                                                                                                                                 | ge from laminar flow to turbulent flow is                                                                                                         |      |  |
|     |                                                                                                 | Page 1                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                 |      |  |



|    | called                                                                                 |                              |  |  |
|----|----------------------------------------------------------------------------------------|------------------------------|--|--|
|    | a) critical velocity                                                                   | b) velocity of approach      |  |  |
|    | c) sub sonic velocity                                                                  | d) super sonic velocity      |  |  |
| k) | The flow in pipe is laminar when                                                       |                              |  |  |
|    | a) Less than 2000                                                                      | b) Between 2000 to 4000      |  |  |
|    | c) More than 4000                                                                      | d) None of these.            |  |  |
| l) | In a foot step bearing, if the speed of the shaft is doubled, then the torque required |                              |  |  |
|    | to overcome the viscous resistance will be                                             |                              |  |  |
|    | a) Double                                                                              | b) Four times                |  |  |
|    | c) Eight times                                                                         | d) Sixteen times.            |  |  |
| m) | A flow through a long pipe at constant rate is called                                  |                              |  |  |
|    | a) steady uniform flow                                                                 | b) steady non uniform flow   |  |  |
|    | c) Unsteady uniform flow                                                               | d) Unsteady non uniform flow |  |  |
| n) | The ratio of inertia force to viscous force is called                                  |                              |  |  |
|    | a) Froude number                                                                       | b) Raynolds number           |  |  |
|    | c) Weber's number                                                                      | d) Mach number               |  |  |
|    |                                                                                        |                              |  |  |

### Attempt any four questions from Q-2 to Q-8

#### Attempt all questions Q-2

| a) | State the application of fluid mechanics. And give the difference between solid and fluid.                                                                                                                                                                                           | 05 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| b) | Define capillary action in detail and derive the equation for capillary rise.                                                                                                                                                                                                        | 05 |
| c) | A flat plate of area $2.5 \times 10^6$ mm <sup>2</sup> is pulled with the speed of 0.4 m/s relative to another plate locates at a distance of 0.15mm from it. Find the force and power required to maintain this speed, if the fluid separating them is having viscosity as 1 poise. | 04 |

.

#### Q-3 Attempt all questions

Derive equation for Pascal's law. 07 a) Classify pressure measuring device. Explain U tube manometers with a neat b) 07 sketch.

#### Q-4 Attempt all questions

| a)         | Define buoyancy and explain the stability condition for floating body.       |    |
|------------|------------------------------------------------------------------------------|----|
| <b>b</b> ) | Explain the analytical method for the measurement Metacenter height.         | 05 |
| <b>c</b> ) | A metallic body floats at a interface of mercury and water such that 32% of  | 04 |
|            | volume is submerged in mercury and 68% in water. Calculate density of metal. |    |

#### Q-5 Attempt all questions

|                                                             | a)         | Give the name of types of flow. Explain any three with neat sketch.                |    |  |
|-------------------------------------------------------------|------------|------------------------------------------------------------------------------------|----|--|
| <b>b</b> ) Derive the continuity equation with assumptions. |            | Derive the continuity equation with assumptions.                                   | 05 |  |
|                                                             | <b>c</b> ) | The velocity component in a steady flow are $u=2kx$ , $v=2ky$ , $w=-4kz$ . What is |    |  |
|                                                             |            | equation of streamline passing through the point $(1, 0, 1)$ .                     |    |  |
| Q-6                                                         |            | Attempt all questions                                                              |    |  |
|                                                             | a)         | Derive Bernoulli's equation with its assumption.                                   | 05 |  |
|                                                             | <b>b</b> ) | Differentiate the following.                                                       | 05 |  |
|                                                             |            | 1) Venturimeter and Orificemeter.                                                  |    |  |

Page 2 || 3



2) Notches and Weirs.

c) The head of water over the center of the orifice of diameter 20 mm is 1 meter. The 04 actual discharge through the orifice is 0.85liter/second. Find the C<sub>d</sub>.

# Q-7 Attempt all questions

a) Explain the Reynolds experiment with a neat sketch.
b) Write short note on movement of piston in a dashpot.
c) An oil density 917 kg/m<sup>3</sup> is being pumped in a15 cm diameter pipe. The discharge is measured as 850 L/min. the drop in pressure in a stretch of 800 m of a pipeline,

both ends of which are at the same elevation, is measured as 95kpa. Estimate the absolute viscosity of the oil.

# Q-8 Attempt all questions

| a)         | What is Mach number and give its signification.                                   | 05 |
|------------|-----------------------------------------------------------------------------------|----|
| b)         | Derive one dimensional flow Bernoulli's equation for adiabatic process.           | 05 |
| <b>c</b> ) | Find the velocity of a bullet fired in a standard air if Mach angle is 30 degree. | 04 |

Take R=287J/Kg <sup>0</sup>k, K=1.4 and T=15 <sup>0</sup>C.

Page 3 || 3

